118 INTERVENČNÍ A AKUTNÍ KARDIOLOGIE / Interv Akut Kardiol. 2024;23(2-3):110-118 / www.iakardiologie.cz OKÉNKO BIOMEDICÍNSKÉHO INŽENÝRSTVÍ / AN INSIGHT INTO BIOMEDICAL ENGINEERING Biomedicínské inženýrství v současné české kardiologii 31. Kask I, Kaňovský J, Hlaváčová K, et al. Optical coherence tomography in a catheterization laboratory: at the verge of the second decade. Intervenční a akutní kardiologie. 2022 Mar 22;21(1):45-51. 32. Rivki M, Bachtiar AM, Informatika T, Teknik F, Indonesia UK. 3Mensio.com [Internet]. Available from: https://www.3mensio.com/. 33. Smitalová R, Pospíšil D, Farkasová B, et al. Simulation training in invasive and interventional cardiology. Intervenční a akutní kardiologie. 2020 Jun 2;19(2):130-3. 34. Kardiosim.cz [Internet]. Available from: https://www. kardiosim.cz/. 35. Volterrani M, Sposato B. Remote monitoring and telemedicine. European Heart Journal Supplements. 2019 Dec 1;21(Supplement_M):M54-6. 36. Zeitler EP, Piccini JP. Remote monitoring of cardiac implantable electronic devices (CIED). Trends Cardiovasc Med. 2016 Aug;26(6):568-77. 37. Bekfani T, Fudim M, Cleland JGF, et al. A current and future outlook on upcoming technologies in remote monitoring of patients with heart failure. Eur J Heart Fail. 2021 Jan 18;23(1):175-85. 38. Diment LE, Thompson MS, Bergmann JHM. Clinical efficacy and effectiveness of 3D printing: a systematic review. BMJ Open. 2017 Dec 21;7(12):e016891. 39. Batteux C, Haidar MA, Bonnet D. 3D-Printed Models for Surgical Planning in Complex Congenital Heart Diseases: A Systematic Review. Front Pediatr. 2019 Feb 11;7. 40. Wang C, Zhang L, Qin T, et al. 3D printing in adult cardiovascular surgery and interventions: a systematic review. J Thorac Dis. 2020 Jun;12(6):3227-37. 41. Kappanayil M, Koneti N, Kannan R, et al. Three-dimensional-printed cardiac prototypes aid surgical decision-making and preoperative planning in selected cases of complex congenital heart diseases: Early experience and proof of concept in a resource-limited environment. Ann Pediatr Cardiol. 2017;10(2):117. 42. Jung C, Wolff G, Wernly B, et al. Virtual and Augmented Reality in Cardiovascular Care. JACC Cardiovasc Imaging. 2022 Mar;15(3):519-32. 43. Goo HW, Park SJ, Yoo SJ. Advanced medical use of three- -dimensional imaging in congenital heart disease: Augmented reality, mixed reality, virtual reality, and three-dimensional printing. Korean J Radiol. 2020;21(2):133-45. 44. Proniewska K, Pregowska A, Walecki P, et al. Overview of the holographic-guided cardiovascular interventions and training – a perspective. Bio-Algorithms and Med-Systems. 2020 Sep 21;16(3). 45. Samant S, Bakhos JJ, Wu W, et al. Artificial Intelligence, Computational Simulations, and Extended Reality in Cardiovascular Interventions. JACC Cardiovasc Interv. 2023 Oct;16(20):2479-97. 46. Ouanes K, Farhah N. Effectiveness of Artificial Intelligence (AI) in Clinical Decision Support Systems and Care Delivery. J Med Syst. 2024 Aug 12;48(1):74. 47. Hnatkova K, Andršová I, Novotný T, et al. QRS micro-fragmentation as a mortality predictor. Eur Heart J. 2022 Oct 21;43(40):4177-91. 48. Kihlgren M, Almqvist C, Amankhani F, et al. The U-wave: A remaining enigma of the electrocardiogram. J Electrocardiol. 2023 Jul;79:13-20. 49. Surawicz B. U Wave: Facts, Hypotheses, Misconceptions, and Misnomers. J Cardiovasc Electrophysiol. 1998 Oct 20;9(10):1117-28. 50. Ritsemavaneck H, Kors J, Vanherpen G. The U wave in the electrocardiogram: A solution for a 100-year-old riddle. Cardiovasc Res. 2005 Aug 1;67(2):256-62. 51. Novotny T, Sisakova M, Kadlecova J, et al. Occurrence of notched T wave in healthy family members with the long QT interval syndrome. Am J Cardiol. 2004 Sep;94(6):808-11. 52. Fu Z, Zhang J, Luo R, et al. TF-Unet:An automatic cardiac MRI image segmentation method. Mathematical Biosciences and Engineering. 2022;19(5):5207-22. 53. Lei Y, Fu Y, Roper J, et al. Echocardiographic image multi-structure segmentation using Cardiac-SegNet. Med Phys. 2021 May;48(5):2426-37. 54. Rim B, Lee S, Lee A, et al. Semantic Cardiac Segmentation in Chest CT Images Using K-Means Clustering and the Mathematical Morphology Method. Sensors. 2021 Apr 10;21(8):2675. 55. Islam MdM, Poly TN, Li YC. Recent Advancement of Clinical Information Systems: Opportunities and Challenges. Yearb Med Inform. 2018 Aug 29;27(01):083-90. 56. Torab-Miandoab A, Samad-Soltani T, Jodati A, et al. Interoperability of heterogeneous health information systems: a systematic literature review. BMC Med Inform Decis Mak. 2023 Jan 24;23(1):18. 57. Profesní katalog ČR. Platy zdravotníků 2025. 2024 [cited 2024 Oct 31]. Platy zdravotníků 2025. Available from: https:// www.kupnisila.cz/platy-zdravotniku-2025-tarifni-tabulky- -priplatky/. 58. Javaid M, Haleem A, Singh RP, et al. Sustaining the healthcare systems through the conceptual of biomedical engineering: A study with recent and future potentials. Biomedical Technology. 2023 Mar;1:39-47. 59. David Y, Judd T. Evidence-based impact by clinical engineers on global patients outcomes. Health Technol (Berl) [Internet]. 2020 Mar 2;10(2):517-35. Available from: http://link. springer.com/10.1007/s12553-019-00345-0. 60. Subramaniam S, Akay M, Anastasio MA, et al. Grand Challenges at the Interface of Engineering and Medicine. IEEE Open J Eng Med Biol. 2024;5:1-13. www.iakardiologie.cz Intervenční a akutní kardiologie
RkJQdWJsaXNoZXIy NDA4Mjc=