Interv Akut Kardiol. 2004;3(1):17-21

Cell therapy after myocardial infarction

MUDr. Jan Horák CSc1,2, prof. MUDr. Michael Aschermann DrSc2
1 EuroMISE centrum - Kardio, Praha
2 II. interní klinika kardiologie a angiologie 1. LF UK a VFN, Praha

Despite modern achievements in the treatment of acute myocardial infarction, in many patients it still leads to a significant loss of contractile elements, pathological remodeling of their left ventricle and subsequent development of heart failure. The natural process of myocardial regeneration, which occures after the insult, is very limited in extent and has little influence on this sequence of events. Stem cells transplantation has emerged as a novel possible treatment strategy for these patients in recent years. It aims to regenerate at least a part of irreversibly damaged muscle and vascular elements and restore contractile function of the heart. Animal experiments proved, that stem cells of different origine can differentiate into cardiomyocytes after implantation into the infarction area, increase it´s vascularity and improve cntractility. First clinical applications of stem cell therapy in humans suggest, that it could prove itself as an effective method of treatment in patients with post infarction left ventricular dysfunction. The most promissing so far seems to be the implantation of bone-marrow derived stem cells into the area of previous myocardial infarction either by direct intramyocardial injections or by intracoronary application. Nevertheless, a long list of unresolved questions and issues around this therapeutic modality still awaits their answering. A real assessement of clinical effectivness of cell therapy in patients with left ventricular dysfuction and of it´s place in daily practice will be possible only after successful conduction of large randomised studies.

Keywords: myocardial infarction, heart failure, left ventricular dysfunction, left ventricular remodeling, stem cells, cell therapy.

Published: December 31, 2004  Show citation

ACS AIP APA ASA Harvard Chicago Chicago Notes IEEE ISO690 MLA NLM Turabian Vancouver
Horák J, Aschermann M. Cell therapy after myocardial infarction. Interv Akut Kardiol. 2004;3(1):17-21.

Přes pokroky v léčbě akutního infarktu myokardu, dochází u značné části postižených pacientů k významné ztrátě kontraktilních elementů, patologické remodelaci levé komory a vývoji srdeční nedostatečnosti. Přirozený proces regenerace myokardu, který po poškození probíhá, má na tento vývoj zanedbatelný vliv. V posledních letech se objevila jako nová možná léčebná strategie u těchto nemocných transplantace kmenových buněk (buněk schopných diferenciace v různé buněčné typy) do poškozeného myokardu s cílem regenerace části svalových a cévních elementů a obnovy kontraktilní funkce. Experimenty na zvířatech ukazují, že kmenové buňky různého původu se mohou po zachycení v infarktovém ložisku diferencovat v kardiomyocyty, zvýšit hustotu kapilár a zlepšit kontraktilitu i celkovou funkci srdce. První klinické aplikace této tzv. buněčné terapie pak naznačují, že by se mohlo jednat o efektivní metodu léčby alespoň u části nemocných s poinfarktovou srdeční dysfunkcí. Zatím nejperspektivnější se jeví implantace kmenových buněk kostní dřeně přímo intramyokardiálně nebo do koronárního řečiště v oblasti předchozího infarktu myokardu. Nicméně řada zásadních otázek kolem tohoto způsobu terapie zatím čeká na své zodpovězení. Reálné zhodnocení klinického významu buněčné léčby pak bude možné až po provedení větších randomizovaných studií.

CELL THERAPY AFTER MYOCARDIAL INFARCTION

Despite modern achievements in the treatment of acute myocardial infarction, in many patients it still leads to a significant loss of contractile elements, pathological remodeling of their left ventricle and subsequent development of heart failure. The natural process of myocardial regeneration, which occures after the insult, is very limited in extent and has little influence on this sequence of events. Stem cells transplantation has emerged as a novel possible treatment strategy for these patients in recent years. It aims to regenerate at least a part of irreversibly damaged muscle and vascular elements and restore contractile function of the heart. Animal experiments proved, that stem cells of different origine can differentiate into cardiomyocytes after implantation into the infarction area, increase it´s vascularity and improve cntractility. First clinical applications of stem cell therapy in humans suggest, that it could prove itself as an effective method of treatment in patients with post infarction left ventricular dysfunction. The most promissing so far seems to be the implantation of bone-marrow derived stem cells into the area of previous myocardial infarction either by direct intramyocardial injections or by intracoronary application. Nevertheless, a long list of unresolved questions and issues around this therapeutic modality still awaits their answering. A real assessement of clinical effectivness of cell therapy in patients with left ventricular dysfuction and of it´s place in daily practice will be possible only after successful conduction of large randomised studies.

Download citation

References

  1. Reimer KA, Lowe JE, Rasmussen MM, et al. The wavefront phenomenon of ischemic cell death I : myocardial infarct size vs duration of coronary occlusion in dogs. Circulation 1977; 56: 786-794. Go to original source... Go to PubMed...
  2. Reimer KA, Jennings RB. The wawefront phenomenon of myocardial ischemic cell death II. Transmural progression of necrosis within the framework of ischemic bed size (myocardium at risk) and collateral flow. Lab. Invest. 1979; 40: 633-644.
  3. ISIS-2 (Second International Study of Infarct Survival) Collaborative Group. Randomised trial of intravenous Streptokinase, oral aspirin, both or neither among 17 187 cases of suspected acute myocardial infarction: ISIS-2. Lancet 1988; 2: 349-360.
  4. Grines CL, Brown KW, Marco J, et al. A comparison of primary angioplasty with thrombolytic therapy for acute myocardial infarction. N. Engl. J. Med. 1993, 328:673-679. Go to original source... Go to PubMed...
  5. Pfeffer MA. Left ventricular remodeling after acute myocardial infarction. Annu. Rev. Med. 1995; 46: 455-456. Go to original source... Go to PubMed...
  6. Roe MT, Ohman AM, Maas AC, et al. Shifting the open artery hypothesis downstream: the quest for optimal reperfusion. J. AM. Coll. Cardiol. 2001; 347: 9-18. Go to original source...
  7. Pfeffer MA, Braunwald E. Ventricular remodeling after myocardial infarction: Experimental and clinical implications. Circulation 1990; 81: 1161-1172. Go to original source... Go to PubMed...
  8. Ertl G, Gaudron P, Hu K. Ventricular remodeling after myocardial infarction: experimental and clinical studies. Basic. Res. Cardio. 1993; 88: 125-137. Go to original source... Go to PubMed...
  9. Ho KK, Anderson KM, Grossman W, et al. Survival after the onset of congestive heart failure in Framingham Heart Study subjects. Circulation 1993; 88: 107-115. Go to original source... Go to PubMed...
  10. Keeley EC, Boura JA, Grines CL. Primary angioplasty versus intravenous thrombolytic therapy for acute myocardial infarction: a quantitative rewiew of 23 randomised trials. Lancet 2003; 361: 13-2. Go to original source... Go to PubMed...
  11. Mahaffey KW, Puma JA, Barbagelata NJ, et al. Adenosine as adjunct to thrombolytic therapy in acute myocardial infarction. J. AM. Coll. Cardiol. 1999; 34: 1711-1720. Go to original source... Go to PubMed...
  12. Wollert KC, Drexler H. Carvedilol Prospective Randomised Cumulative Survival (COPERNICUS) trial - Carvedilol as the sun and the center of the beta-blocker world? Circulation 2002; 106: 2164-2166. Go to original source... Go to PubMed...
  13. Stanworth sj, Newland AC. Stem cells: progress in research and adging towards the clinical setting. Clin.Med. 2001; 1: 378-382. Go to original source... Go to PubMed...
  14. Thomson JA, Itskovitz EJ, Shapiro SS, et al. Embryonic stem cells lines derived from human blastocysts. Science 1998; 282: 1145-1147. Go to original source... Go to PubMed...
  15. Graft T. Differentiation plasticity of hematopoietic cells. Blood 2002; 99: 3089-3101. Go to original source... Go to PubMed...
  16. Orlic D, Hill JM, Arai AE. Stem cells for myocardial regeneration. Circ. Res. 2002; 91: 1092-1102. Go to original source... Go to PubMed...
  17. Makino S, Fukuda K, Myoshi S, et al. Cardiomyocytes can be generated from marrow stromal cells in vitro. J. Clin. Invest. 1999; 103: 697-705. Go to original source... Go to PubMed...
  18. Yoon Y-A, Murayama T, Tkebuchava T, et al. Clonally expanded bone marrow derived stem cells differentiate into multiple lineages in vitro and can attenuate myocardial dysfunction post myocardial infarction. Circulation, 2002; 106 (suppl II): 11-51. Go to PubMed...
  19. Toma C, Pittenger MF, Cahill KS. Human mesenchymal stem cells differentiate to a cardiomyocyte phenotype in the adult murine heart. Circulation 2002; 106: 1913-1918. Go to original source... Go to PubMed...
  20. Buchman I, Schaper W. Arteriogenesis versus angiogenesis: two mechanisms of vessel growth. New Physiol. Sci. 1999; 14: 121-125. Go to original source...
  21. Beltrami AP, Urbanek K, Kajstura J, et al. Evidence that human cardiac myocytes divide after myocardial infarction. N. Engl. J. Med. 2001; 34-I: 1750-1757. Go to original source... Go to PubMed...
  22. Quaini F, Urbanek K, Beltrami AP, et al. Chimerism of the transplanted heart. N. Engl. J. Med. 2002; 346: 5-15. Go to original source... Go to PubMed...
  23. Asahara T, Masuda T, Takahashi T, et al. Bone marrow origin of endothelia progenitor cells responsible for postnatal vasculogenesis in physiological and pathological neovascularisation. Circ. Res. 1999, 85:221-228. Go to original source... Go to PubMed...
  24. Shi Q, Rafii S, Hong-De WM et al: Evidence for circulating bone marrow-derived endothelial cells. Blood 1998; 92: 362-367. Go to original source...
  25. Peichev M, Naiyer AJ, Pereira D, et al. Expression of VEGFR-2 and AC133 by circulating human CD34+ cells identifies a population of functional endothelia precursors. Blood 2000; 95: 952-958. Go to original source...
  26. Shintani S, Murohara T, Ikeda H, et al. Mobilisation of endothelial progenitor cells in patients with acute myocardial infarction. Circulation 2001; 103: 2776-2779. Go to original source... Go to PubMed...
  27. Jackson KA, Majka SM, Wang H, et al. Regeneration of ischemic cardiac muscle and vascular endothelium by adult stem cells. J. Clin. Invest. 2001; 107: 1395-1402. Go to original source... Go to PubMed...
  28. Lapidot T, Petit I. Current understanding of stem cell mobilisation: the roles of chemokines, proteolytic enzymes, adhesion molecules, cytokines and stromal cells. Exp. Hematol. 2002; 30: 973-981. Go to original source... Go to PubMed...
  29. Kocher AA, Schuster MD, Szaboles MJ, et al. Neovascularisation of ischemic myocardium by human bone-marrow derived angioblasts preventns cardiomyocyte apoptosis, reduces remodeling and improves cardiac function. Nat. Med. 2001; 7: 430-436. Go to original source... Go to PubMed...
  30. Barbash IM, Chouraqui P, Baron J. Systemic delivery of bone marrow-derived mesenchymal stem cells to the infarcted myocardium. Feasibility, cell migration and body distribution. Circulation 2003; 108: 863-868. Go to original source... Go to PubMed...
  31. Orlic D, Kajstura J, Chimenti S, et al. Mobilised bone marrow cells repair the infarcted heart, improving function and survival. Proc. Nat. Acad. Sci. 2001; 98: 10334-10349. Go to original source... Go to PubMed...
  32. Orlic D, Arai AE, Sheikh FH. Cytokine mobilise CD 34+ cells do not benefit rhesus monkeys following induced myocardial infarction. Blood 2002: 100 (suppl 1).
  33. Chiu RC-J, Zibaitis A, Kao RL. Cellular cardiomyoplasty: myocardial regeneration with satellite cell implanatation. Ann.Thorac. Surg. 1995; 60: 8-12. Go to original source... Go to PubMed...
  34. Murrey CE, Wiseman RW, Schwartz SM, et al. Skeletal myoblast transplantation for repair of myocardial necrosis. J. Clin. Invest. 1996; 98: 2512-2523. Go to original source... Go to PubMed...
  35. Scorsin M, Hagege A, Vilquin JT, et al. Comparison of the effects of fetal cardiomyocytes and skeletal myoblast transplantation on postinfarction left ventricular function. J. Thorac. Cardiovasc. Surg. 2000; 119: 1169-1175. Go to original source... Go to PubMed...
  36. Taylor DA, Atkins BZ, Hungspreugs P, et al. Regenerating functional myocardium: improved performance after skeletal myoblast transplantation. Nat. Med. 1998; 4: 929-933. Go to original source... Go to PubMed...
  37. Hutcheson KA, Atkins BZ, Hueman MT, et al. Comparisn of benefits on myocardial performance of cellular cardiomyoplasty with skeletal myoblasts and fibroblasts. Cell Tranplant 2000; 9: 359-368. Go to original source... Go to PubMed...
  38. Orlic D, Kajstura J, Chimenti S, et al. Transplanted adult bone marrow cells repair myocardial infarcts in mice. Ann. N. Y. Acad. Sci. 2001; 938: 221-229. Go to original source... Go to PubMed...
  39. Kawamoto A, Gwon H-C, Iwaguro H, et al. Therapeutic potential of ex vivo expanded endotelial progenitor cells for myocardial ischemia. Circulation 2001; 103: 634-637. Go to original source... Go to PubMed...
  40. Fuchs S, Baffour R, Zhou ZF, et al. Transendocardial delivery of autologous bone marrow enhances collateral perfusion and regional function in pigs with chronic experimental myocardial ischemia. J. AM. Coll. Cardiol 2001; 37: 1726-1732. Go to original source... Go to PubMed...
  41. Tomita S, Mickle DA, Weisel RD, et al. Improved heart function with myogenesis and angiogenesis after autologous porcine bone marrow stromal cell transplantation. J. Thorac. Cardiovasc. Surg. 2002; 123: 1132-1135. Go to original source... Go to PubMed...
  42. Min JY, Yang Y, Converson KL. Transplantation of embryonic stem cells improves cardiac function in postinfarcted rats. J. Appl. Physiol. 2002; 92: 288-296. Go to original source... Go to PubMed...
  43. Wang JS, Shum-Tim D, Chedrawy E, et al. The coronary delivery of narrow stromal cells for myocardial regeneration: pathophysiologic and therapeutic considerations. J. Thorac. Cardiovasc. Surg. 2001; 122: 699-705. Go to original source... Go to PubMed...
  44. Hassink RJ, de la Riviere AB, Mummery CL, Doevendas PA. Transplantation of cells for cardiac repair. J. Am. Coll. Cardiol. 2003; 41: 711-717. Go to original source... Go to PubMed...
  45. Menasche P. Cell transplantation for the treatment of heart failure. Semin. Thorax. Cardiovasc. Surg. 2002; 14: 157-166. Go to original source... Go to PubMed...
  46. Stamm C, Westphal B, Kleine HD, et al. Autologous bone-marrow stem-cell transplantation for myocardial infarction. Lancet 2003; 361: 45-46. Go to original source... Go to PubMed...
  47. Hamano K, Nishida M, Hirata K. local implantation of bone marrow cells for therapeutic angiogenesis in patients with ischemic heart disease: clinical and preliminary results. Jpn. Circ. J. 2001; 65: 845-847. Go to original source... Go to PubMed...
  48. Fuchs S, Weisz G, Kornowski R, et al. Catheter based autologous bone marrow myocardial injection in no-option patients with advanced coronary artery disease: a feasibility and safety study. Circulation 2002; 106 (suppl. II): II-665.
  49. Tse H-F, Kwong Y-L, Chan JKF, et al. Angiogenesis in ischemic myocardium by intramural autologous bone marrow mononuclear cell implantation. Lancet 2003; 361: 47-49. Go to original source... Go to PubMed...
  50. Perin EC, Dohmann HFR, Borojevic R, et al. Transendocardial, autologous bone marrow cell transplantation for severe, chronic ischemic heart failure. Circulation 2003; 107: 2294-2302. Go to original source... Go to PubMed...
  51. Stauer BE, Brehm M, Zeus T, et al. Intracoronary human autologous stem cell transplantation for myocardial regeneration following myocardial infarction. Dtsch. Med. Wochenschr. 2001; 126: 932-938. Go to original source... Go to PubMed...
  52. Stauer BE, Brehm M, Zeus T, et al. Repair of infarcted myocardium by autologous intracoronary mononuclear bone marrow transplantation in humans. Circulation 2002; 106: 1911-1918. Go to original source...




Interventional Cardiology

Madam, Sir,
please be aware that the website on which you intend to enter, not the general public because it contains technical information about medicines, including advertisements relating to medicinal products. This information and communication professionals are solely under §2 of the Act n.40/1995 Coll. Is active persons authorized to prescribe or supply (hereinafter expert).
Take note that if you are not an expert, you run the risk of danger to their health or the health of other persons, if you the obtained information improperly understood or interpreted, and especially advertising which may be part of this site, or whether you used it for self-diagnosis or medical treatment, whether in relation to each other in person or in relation to others.

I declare:

  1. that I have met the above instruction
  2. I'm an expert within the meaning of the Act n.40/1995 Coll. the regulation of advertising, as amended, and I am aware of the risks that would be a person other than the expert input to these sites exhibited


No

Yes

If your statement is not true, please be aware
that brings the risk of danger to their health or the health of others.